Search results for "SYNTHETIC ION CHANNELS"
showing 3 items of 3 documents
Facilitated Anion Transport Induces Hyperpolarization of the Cell Membrane That Triggers Differentiation and Cell Death in Cancer Stem Cells
2015
Facilitated anion transport potentially represents a powerful tool to modulate various cellular functions. However, research into the biological effects of small molecule anionophores is still at an early stage. Here we have used two potent anionophore molecules inspired in the structure of marine metabolites tambjamines to gain insight into the effect induced by these compounds at the cellular level. We show how active anionophores, capable of facilitating the transmembrane transport of chloride and bicarbonate in model phospholipid liposomes, induce acidification of the cytosol and hyperpolarization of plasma cell membranes. We demonstrate how this combined effect can be used against canc…
Optical Gating of Photosensitive Synthetic Ion Channels
2011
4-oxo-4-(pyren-4-ylmethoxy) butanoic acid is used as a photolabile protecting group to show the optical gating of nanofluidic devices based on synthetic ion channels. The inner surface of the channels is decorated with monolayers of photolabile hydrophobic molecules that can be removed by irradiation, which leads to the generation of hydrophilic groups. This process can be exploited in the UV-light-triggered permselective transport of ionic species in aqueous solution through the channels. The optical gating of a single conical nanochannel and multichannel polymeric membranes is characterised experimentally and theoretically by means of current-voltage and selective permeation measurements,…
Carbohydrate-Mediated Biomolecular Recognition and Gating of Synthetic Ion Channels
2013
Nanochannel-based biosensing devices have been proposed for selective detection of protein analyte molecules. However, the design and miniaturization of reusable channel-based biosensors is still a challenge in nanoscience and biotechnology. We present here a reusable nanofluidic biosensor based on reversible lectin-carbohydrate interactions. The nanochannels are fabricated in heavy ion tracked polymer membranes. The channel walls are functionalized with p-aminophenyl alpha-D-mannopyranoside (APMP) monolayers through carbodiimide coupling chemistry. The chemical (mannopyranoside) groups on the inner channel walls serve as binding sites and interact with specific protein molecules. The bindi…